

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

1

3D integer factorization

João Carlos Leandro da Silva

Via Medole 22, Castiglione delle Stiviere (MN), Italy

We propose a new view for integer factorization based on a radical design.

In the traditional model, the computer experiment consists of physical

devices (hardware) which in turn contain programs (software) that run an

algorithm equivalent to some mathematical theory. In the present model,

the mathematical theory corresponds to a finite set of basic algorithms

distributed among the hardware and all of these constitute the computer

experiment itself. All of the currently known factoring algorithms consist

of several steps in order to find any non-trivial factor. Such algorithms

may run on a single or many machines. Our method is a single step – the

generation of a multiple of any prime factor. Consequently, factoring

reduces to searching efficiently for one such multiple. If the given modulus

has decimal digits then machines or physical cores are required. The

resulting search experiment is a square matrix of computers. This

method is deterministic and revolves around finding a three-dimensional

point that will lead to a successful factorization.

1. INTRODUCTION

The fundamental theorem of arithmetic states that every integer greater

than 1 is either a prime or a finite product of prime numbers and such

product is unique. For example, 28 is four times seven or 28 = 2 × 2 × 7

and such is the only way you can express the integer 28 in terms of prime

numbers. In fact, the unique-prime-factorization theorem is another name

for the fundamental theorem of arithmetic [1]. Finding ways to break or

factor composite integers into their respective primes goes back a long

time but with the birth of public-key cryptography [2], the interest has

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

2

literally exploded [3]. Today, computer scientists refer to these methods as

integer factorization algorithms [4]. Among the most used algorithms is

the Elliptic Curve Method (ECM), the Quadratic Sieve (QS) and the

Number Field Sieve (NFS). Although such techniques have achieved

remarkable factorization records during the past decades, they all suffer

from several drawbacks. First, their dependence on smooth numbers or

random integers. Second, their inability to scale-up due to a bottleneck

effect in at least one of their steps. Third, all these algorithms date back to

1995, that is, in the past twenty-four years nobody has invented a new

factorization method [5]. In this work, we provide an alternative path to

the status quo. 3D integer factorization does not use smooth numbers. It

has a single step so as the modulus increases either it works (outputs a

non-trivial factor) or simply keeps on running. Further, this novel approach

introduces original ideas and concepts that are worth considering.

2. NEW MODEL

In computer science, researchers frequently use terms such as experiment,

hardware, software and algorithm [6]. What do these words really mean?

Curious is the fact that no formal definition for algorithm exists. However,

there is a general agreement regarding its properties. First, an algorithm

has a finite description. Second, it is composed of “basic” steps. Third, the

amount of resources required by the algorithm at any given time must be

finite. Fourth, the next step depends on the result of the previous step.

Fundamentally, an algorithm is a finite procedure that we will implement

on a machine via a programming language [7]. Following, we suggest that

the notions of algorithm and computer experiment are much more ample

than expected. As shown in page 4, in the conventional model, an

experiment comprises hardware of different types such as monitors and

printers. These, in turn, contain software that run many algorithms. It is

clear that all this can be associated with a single machine. For example,

suppose that our experiment consists in recording the number of vehicles

and the respective license plates of the cars parked in front of your house

from 7 am to 7 pm. In this case, the hardware is a laptop and a smartphone.

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

3

The software is Microsoft Office and the algorithm is an Excel file. If more

than one computer is used then the experiment incorporates all hardware,

all software and every algorithm needed to carry it out. Such depicts the

case of multiple machines as displayed on the left side of page 4.

Therefore, in the conventional model there is no significant difference

between an experiment for a single and that for multiple machines. On the

other hand, in the new model major alterations occur. A 10 by 10 matrix

enclosing 100 squares is on the right side of page 4. Each square contains a

blue capital letter M that stands for machine with a number subscript

ranging from 1 to 100 symbolizing the software count. The given matrix

has an exterior red contour and an internal green grid. What we have just

described is the new model. It represents a new method to factor a 10-digit

modulus like 1476602513. In theory, since the modulus has 10 decimal

digits then we need 100 computers. Each machine or hardware will occupy

a square of the green grid. In addition, each machine contains a numbered

copy of a software called Mathematica denoted by the software count.

Within such proprietary program a basic algorithm exists that joined with

all of its 100 copies constitutes the experiment itself as defined by the red

contour. Note that in the new model there is no such thing as a factoring

algorithm running on a single or multiple machines. Instead, we have a

search experiment composed of 100 machines each containing a basic

algorithm with a unique three-dimensional point . Thus, in the new

model (what was once understood as the “algorithm”) now has been split

or partitioned into 100 different basic algorithms as shown by the internal

green grid on page 4. In general, given a modulus with decimal digits

then machines are required. Yet, when the modulus is small like

1476602513 it is possible to use a single computer. The previous

description shows that experiment, hardware, software and algorithm are

not four distinct layers of computer science. We have revealed with respect

to experiment and algorithm, a new and interesting connection that will aid

in the design of innovative integer factorization methods.

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

4

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

5

3. FACTORING ALGORITHM = SEARCH EXPERIMENT

Our analysis only considers classical computers (Turing machines) where

each computer has a finite amount of random access memory (RAM) and a

central processing unit (CPU) of finite speed. We deal with deterministic

algorithms, that is, if an input results in output then every time we run

that algorithm with input the output will always be . Assume the

modulus is a semiprime or a composite of two different but equally sized

prime factors. What are the main similarities among the known integer

factorization algorithms? First, all three algorithms (ECM, QS and NFS)

require some type of pre-computation as first step. Second, they all consist

of a finite sequence of intermediate steps but not every such step is

polynomial with respect to the input. Third, their final step is always the

evaluation of the greatest common divisor between some specific

numerical calculation and the given modulus. If the result is a non-trivial

factor then we have a successful factorization. Please realize that such can

only occur if the specific numerical calculation is a multiple of either

prime factor. At this stage, a natural question comes to mind. The final aim

of any integer factorization algorithm is to find a prime factor as swift as

possible. Then, why not try to invent new algorithms based on the

generation of a multiple of any prime factor? Regretfully, it seems that

very few people believe that such is worth pursuing.

To put it bluntly, factoring boils down to searching and efficient factoring

is finding an express path to perform a successful search. From here on,

we will substitute the commonly used expression “factoring algorithm”

with “search experiment” or SE for short. Since the modulus is a

semiprime, the mathematical theory states that there is an infinite number

of multiples regarding either prime factor. Our aim is to find one such

multiple as fast as possible. At the core of the SE there is a basic

algorithm. It consists of a seed, a generator and a key. The seed changes

the modulus into another integer. The generator has three inputs. The first

input is the seed or an integer in base 10. The second input consists of a

sequence of consecutive positive integers. The generator takes the seed

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

6

and converts it to many different bases (as many as the sequence)

producing as output an array of integers. The key represents a three-

dimensional point where all three coordinates are positive

integers. If the given modulus has decimal digits then computers are

required. The finite set of algorithms are copies of the basic algorithm

distributed among machines. Yet, the values for both and in each

of these copies are distinct and constant. The third input of the generator is

the variable . Therefore, the search experiment consists in running

simultaneously all computers where starts at one and is incremented

at every iteration. Please note that the variable will determine if a

multiple of any prime factor exists. In such case, the specific computer will

halt and the respective algorithm will output any non-trivial factor of the

given modulus. The search is complete and the factorization achieved. In

several ways, 3D integer factorization is related to 3D cryptography [8].

The first views the modulus not as a mere composite number but as a

mathematical cipher, that is, an integer that hides through the elementary

operation of multiplication two unknown prime numbers. In order to break

such cipher, our method does not use the power of mathematics alone but

brings along the principles of basic cryptanalysis. In fact, the search

experiment via its square matrix of computers is just another

architecture built to test simultaneously as many possible combinations of

 points as we can. Our hope is that at least one of these machines

will find a key that will open the hidden door to a valid factorization in a

reasonable span of time. We will begin to explain everything in detail.

What exactly indicates a multiple of any prime factor? Two illustrative

examples will clear any doubts. Suppose our modulus is 15 where 3 and 5

are its prime factors. Then, any multiple of 3 and any multiple of 5 will do

the job in a single step because GCD[15, 6] = 3 and GCD[15, 10] = 5

where GCD stands for the greatest common divisor. Likewise, if the

modulus is 143 where 11 and 13 are its prime factors, then any multiple of

11 and 13 will result in a successful factorization since GCD[143, 22] = 11

and GCD[143, 26] = 13 as expected. We will demonstrate that there are

many ways to generate such multiples.

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

7

4. GENERATION OF A MULTIPLE OF ANY PRIME FACTOR

Provided all the decimal digits of the modulus, what can we do with only

such piece of information? Surprisingly, a great deal! Remember the

previous examples, 15 and 143. Pick 15, however, now regard this integer

as a list or {1, 5} to be exact. Given a list of distinct objects such list can

be organized in arrangements. Since both digits in our list are distinct,

the number of permutations is 2! = 2. In fact, the permutations are {1, 5}

and {5, 1} but after joining the respective digits inside each list, the result

is 15 and 51, respectively. It is easy to see that 51 is a multiple of 3, hence

GCD[15, 51] = 3 and we have found a way to generate a multiple of one of

the prime factors of 15. Repeating this process again with 143, the number

of permutations is 3! = 6 or {143, 134, 413, 431, 314, 341}. Only 341 is a

multiple of 11, consequently, GCD[143, 341] = 11 as expected. At last, we

select the integer 2923 or the product of 37 and 79. In this case, the

number of permutations is not twenty-four (4!) but twelve. The reason for

such lies in the undeniable observation that the digit 2 is repeated twice

within the list {2, 9, 2, 3}. Hence, if the modulus has decimal digits and

some digits occur more than once, then the total number of permutations is

smaller than but bigger than one. With respect to the previously

mentioned twelve permutations, only two numbers (9322 and 3922) are

multiples of 79 and 37, respectively. If we now consider 175337 or the

product of 271 and 647, there are 180 permutations but only one of these is

a multiple of 271. Actually, GCD[175337, 775331] = 271. Pick 32927347

there are 5,040 permutations, but only two of these are multiples of the

respective prime factors. Thus, GCD[32927347, 33774922] = 3767 and

GCD[32927347, 92243773] = 8741. Finally, elect 529356695359 as the

last example. Even though there are 831,600 permutations, none of these is

a multiple. Here, we fail to factor the given modulus. In conclusion, as the

modulus increases the number of permutations grows very fast making it

unfeasible from a computational stand. What happens if we pick a

permutation at random? Such will not work either because there is no

mathematical proof that among all the permutations there is a multiple.

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

8

We make another attack but this time with repunits. Repunits are integers

composed of a single decimal digit but repeated many times like 1111111.

Their mathematical formula is where stands for the number

of digits. For example, the previous repunit has seven digits so in order to

generate it substitute into the above formula. In my opinion, repunits

can factor any composite number. In fact, GCD[2923, 111] = 37 where

 and GCD[175337, 11111] = 271 where . The next modulus is

32927347 and GCD[32927347, repunit] = 3767 where .

Remember that we failed to factor 529356695359 using permutations.

Now, we get GCD[529356695359, repunit] = 744431 where

and GCD[529356695359, repunit] = 711089 where . Does this

mean that repunits are more efficient than permutations? The answer is no

since as the modulus increases so does the size of making it impractical.

For example, trying to factor a number like RSA-1024 bits (309 decimal

digits) which in theory should be the product of a 155 decimal prime and a

154 decimal prime is literally impossible because the size of must be at

least 155 decimal digits. Yet, repunits possess an interesting property. The

infinite sequence of ones is both a decimal number and a binary number.

For instance, in our previous example GCD[2923, 111] = 37 the repunit

111 is the product of 3 and 37. The built-in function GCD of Mathematica

from Wolfram Research Inc. considers all the arguments of such function

as decimal numbers by default. On the other hand, if 111 is viewed as a

binary number then it would be equivalent to 7 but GCD[2923, 7] = 1 and

that is not our objective. Anyway, is there an integer in another base other

than ten that is a multiple of any prime factor of 2923? Yes and there are

many. For example, 2923 in base 27 is 407 and GCD[2923, 407] = 37.

Likewise, 2923 in base 42 is 395 and GCD[2923, 395] = 79 as expected.

Once again, we use another built-in function IntegerDigits to obtain both

407 and 395. Also, 175337 in base 99 and 32927347 in base 3777 give

successful factorizations. Still, this variation will not work either since it is

evident that as the modulus increases so does the numerical value of the

corresponding base.

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

9

Another important aspect when trying to generate a multiple of any prime

factor is the size or the number of decimal digits of the respective multiple.

In the previous examples with repunits, the size of is always greater than

the number of decimal digits of the smallest prime factor. For example, the

modulus 175337 is the product of 271 and 647. Both prime factors have

three decimal digits and GCD[175337, 11111] = 271 where . It is

obvious that 111 or could never factor 175337 since 111 is smaller

than both 271 and 647. Therefore, given a semiprime or modulus with

decimal digits, its smallest prime factor must have at least

 decimal

digits. If is even then it is straightforward but if is odd, divide it by

two and take the integer value as the result. Hence, any potential multiple

must have at least

 decimal digits. For example, RSA-1024 bits is a

semiprime with 309 decimal digits. If we divide 309 by two and remain

with the integer value, 154 is the result. Accordingly, if you ever try to

design a generator of multiples for RSA-1024 bits make sure that any

output of the respective generator is at least 154 decimal digits in size,

otherwise, your task is unattainable.

5. BASIC ALGORITHM

We learned that permutations and repunits by themselves do not lead to an

efficient mechanism for generating multiples. The way to go is to combine

a class of repunits with a collection of different bases but of a higher

power. What do we mean? The formula creates the

sequence of ones while produces the sequence of twos and

so on. It is clear that the general formula is where ranges

from one to nine so the class of repunits is the corresponding nine infinite

sequences. Remember IntegerDigits we will use it again to present our

argument. Base 99 successfully factored 175337 but such required calling

ninety-eight times the above built-in function. Another option is to pick a

small interval and increase it by orders of ten. For example, setting the

interval to nine calls the function only five times. Because IntegerDigits

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

10

starts at and ends at so base 100009 factors

175337. This is what we mean by a collection (one for each repunit

sequence) of different bases but of a higher power.

Our basic algorithm is a Mathematica notebook (see pages 12-13) and the

size of the code is very small. The first line of Mathematica code clears all

internal variables. The second line calculates the amount of memory used

at the start of the notebook. The third line defines the number to be

factored or . The fourth line sets or the second coordinate of

the key. Such variable is a cyclic integer (1 followed by 12 followed by

123 and so on), that is, if we use a single computer then after eleven runs

 because following each run, the value of must be

changed manually. The fifth line identifies the variable as the sum or

difference between the given and . Such variable is the input of

the seed. The sixth line is or the first coordinate of the key. Recall

IntegerDigits and the respective range that starts at and

ends at . There are two distinct powers of ten (1 and 5), that

is, and , respectively. The seventh line refers to the variable

 which is the maximum value of the first coordinate of the key or .

Next, we introduce the body of our basic algorithm which consists of a

single While loop. It is contained within a built-in function Timing which

calculates the running time in seconds of all the operations inside the body.

A few variables and constants are initialized outside of the loop. The third

coordinate of the key is set to where corresponds to the variable

in the formula for the repunits. Thus, determines not only

the size of all repunits but also if a multiple of any prime factor of the

given modulus exists. In fact, if such is not the case then will go on (keep

increasing by increments of one) until the full resources (RAM, HDD, etc)

of the computer are used. The constant refers to the interval (in our

previous example it was 9) but here it is set to 1000. Since we are dealing

with a search experiment (SE) it is important to introduce two new terms:

search space and size of the search space. Suppose that an oracle asks you

to pick any prime number of any size. Further, the oracle tells you that it

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

11

will search inside your mind and find the chosen prime. Such oracle must

be godlike or incredibly lucky since the search space is and the size

of the search space is infinity. Ideally, the size of the search space (SSS) is

equal to the search space (SS). In the real world, SSS << SS. In the basic

algorithm and the selection of its numerical value requires

great caution. If is too big, the SE will run very slowly and if it is

too small, the SE will be fast but may not find any prime factor.

Depending on the physical characteristics of the SE itself, the balance

point is determined. For example, in our basic algorithm

because SE is a single machine (Intel Core i7-6700 CPU @ 3.4 GHz) with

16 GB of RAM. In other words, such numerical value for delta is the right

balance between size and speed with respect to the computer at hand. The

next constant is which takes as input the variable and reverses

its decimal digits. The final constant is and represents an empty set

or simply the fact that no prime factor exists. Ultimately, we explain the

inner workings of the While loop. Essentially, the loop is the generator. It

amounts to a mix of repunits and the seed represented in different bases.

The mix consists in adding and subtracting both repunits and bases. At

every iteration of the While loop the following happens. First, the is

converted into 1000 different integers. Second, these 1000 positive

integers get added and subtracted to nine different sequences of repunits.

Third, the resulting 1000 integers are all potential multiples. Yet, if no

multiple of any of the prime factors is generated then or the third

coordinate of the key is incremented by one and the loop runs again. On

the other hand, if a multiple exists, the loop terminates and outputs and

any respective prime factor. In addition, the loop also outputs the total time

(in seconds) required to factor the given modulus. The last line of code of

the basic algorithm calculates the maximum amount of memory used at the

end of the notebook titled BasicAlgorithm.nb . The next two pages regard

only the code of the basic algorithm while the pages 14-15 relate to its

evaluation displayed by In[]:= for input and Out[]:= for output. Note that

comments start with (* and end with *) as shown in the next two pages.

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

12

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

13

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

14

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

15

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

16

6. SEARCH EXPERIMENTS AND RESULTS

In the last two pages, the previous experiment becomes search experiment

nine or SE9, for short, as shown in the table below:

SE# SS SSS x y z size of

modulus

(decimal

digits)

prime

factor(s)

time to

factor

(seconds)

1 1 1 0 1 4 37 and 79 0

2 10 1 0 3 6 271 0

3 100 2 0 2 8 3767 0

4 100 2 0 4 10 18211 0

5 1000 4 0 15 12 711089 1

6 1000 4 123456789 32 14 5894327 2

7 1000 9 12 34 16 65774893 2

8 1000 13 0 32 17 116092003 2

9 1000 12 123456789012 104 20 6063673667 8

It is very tempting to look above and imagine all sorts of patterns and

relationships so before you jump into any conclusion, several remarks are

of utmost importance. First, each search experiment is associated to a

single modulus. Second, it is self-evident that as the modulus increases so

does the search space (SS) and the same appears to occur with respect to

the size of the search space (SSS) but it is not so. 3D integer factorization

should scale-up to a composite like RSA-1024 bits still using SSS = 1000.

Third, the range of the first coordinate of the key or is always small. For

example, even for the RSA semiprime, the range is between 4 and 308

inclusive. Fourth, recall that the second coordinate of the key or is a

cyclic integer so only 309 cycles are necessary for RSA-1024 bits. Fifth, it

seems that as the modulus increases so does the third coordinate of the key

or but such is misleading. In theory, for any given search experiment,

there are many different points. Each value of reported above

represents the first instance of a successful factorization. Hence, there may

be other numerical values (smaller or larger) for that result in a non-

trivial factor. Sixth, the times (in seconds) recorded above regard nine

computer simulations and not the actual running of the respective search

experiments. To be more precise, SE1 pertains to 2923; SE2 to 175337;

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

17

SE3 to 32927347; SE4 to 1476602513; SE5 to a 12-digit semiprime or

529356695359; SE6 to 54090759402923; SE7 to a 16-digit modulus or

6427204259252773; SE8 to 50279637935012947 and finally SE9 to

51585327759237658027. Unfortunately, throughout this research, we only

had a single computer. Thus, computer simulation simply means using the

same machine many times instead of multiple machines once. SE9

concerns a semiprime with 20 decimal digits so 400 physical cores are

needed but only one computer is available, so we manually changed the

settings within the basic algorithm many times. How? Open the notebook

BasicAlgorithm.nb and set and then run it for 10 seconds. If

during this period there is no output, abort the evaluation of the notebook.

Next, set and repeat the same actions until and .

Continue this process but with and followed by and

 until and It is important to note that next and

 followed by and until and After two

hundred and one evaluations of the above notebook, we discover that for

 and with a prime factor is obtained

in 8 seconds. Please note that such is equivalent to a search experiment of

201 computers with 201 different points running for 10 seconds.

Now, we can justify why the previous times (in seconds) may not be the

minimum factorization time for each given search experiment. In SE9, we

needed 400 computers to test 400 different points so 199 distinct

 points are missing. This means that among these there could be

some point where the value of is smaller than 104 and, in such

case, the factorization time would be less than 8 seconds. In fact, such is

the reason behind 3D integer factorization requiring computers running

simultaneously for a modulus with decimal digits. All machines must

run concurrently so that the different points are tested. In fact,

it is impossible to know beforehand which machine will find a prime

factor first. A last remark on SE9, in BasicAlgorithm.nb look at the

numerical values corresponding to Out[9] and Out[2]. Their respective

difference (23,973,400 – 23,564,384) is the actual amount of memory

(409,016 bytes) needed to find the prime in the previous table.

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

18

We just mentioned that all computers must run at the same time in

order to search for a valid key. Yet, there is also the possibility that all

computers keep running or never halt because the required value for is

too big. In my opinion, two are the ways to validate this new scheme. One,

repeat SE1 thru SE9 but this turn using the respective required machines

and for each SE record the minimum factoring time. Continue this process

with higher moduli (for instance, until and plot the results in a

two-dimensional graph where the horizontal axes stands for the size of the

modulus in decimal digits and the vertical axes for the factorization time in

seconds. The resulting graph should be a straight line. Calculate its slope

to determine the validity of 3D integer factorization. If the slope is big, the

method fails to scale-up. On the other hand, if it is zero or small then

repeat the entire process with even higher moduli (and graph

again to check if the slope did not vary. If it is still small then it is very

likely that this innovative technique is efficient. Yet, before you start,

recall that for a modulus with 100 decimal digits 10000 computers are

required. Such large quantity of machines is difficult to find but they exist

in the form of distributed computing or as supercomputers. Currently, the

largest known supercomputer is Sunway TaihuLight and is located in

China. It has more than ten million physical cores which means that even

RSA-2048 bits (617 decimal digits) could be tested using the present

method. Two, we sincerely hope that someone will consider this paper

interesting and as a result will try to formalize the current method. If this

happens, one would be able to mathematically prove or disprove the

validity of 3D integer factorization. In other words, if a mathematician or

computer scientist can formalize this work then, in theory, it would be

possible to understand the bounds (lower and upper) with respect to the

size of the modulus without doing any experiment. Regardless, please

acknowledge that if this approach is not suitable for larger moduli, perhaps

a variation of it and/or an adequate modification either mathematical or

conceptual may do the task. Our objective is to find either alone or in

collaboration an efficient method or technique that will definitely solve the

integer factorization problem in the positive.

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

19

7. CONCLUSIONS

We believe that the design principles of simplicity and symmetry should

be the pillars for the next generation of factoring algorithms. Simple means

many things. First, the algorithm is deterministic and uses a small portion

of the total RAM available within the given computer system independent

of the modulus. Second, the algorithm has few steps and the size of the

code is small. Third, the body of the algorithm contains two loops (at

most) and we can measure its running time in seconds with precision.

Fourth, all built-in functions are polynomial with respect to the input.

Every mathematical operation employed runs in polynomial time.

Likewise, symmetrical can be used to characterize several things. First, it

is evident that the mathematical theory behind any truly efficient factoring

algorithm must be both general and unconditional. In addition, it should

also be symmetrical. For example, 3D integer factorization searches for a

multiple of any prime factor. Since the modulus is a semiprime there is an

infinite number of multiples for both prime factors and such is symmetry

for an equal probability exists of finding either prime factor. Second, the

body of the basic algorithm is symmetrical because it consists entirely on

the addition and subtraction of both repunits and different bases. Third, for

any modulus , the respective search experiment is symmetrical due to

the fact that all machines have the same chance of discovering any

prime factor. In this paper, we showed a new perspective on the integer

factorization problem both in terms of mathematical theory and computer

organization. The accepted notion of factoring algorithm was questioned

and, as a result, the concept of search experiment was introduced via 3D

integer factorization. Nine different semiprimes ranging in size from four

to twenty decimal digits were factored using this method. The

corresponding factoring times range from zero to eighth seconds on a

single computer. However, in order to detect the minimum factoring time,

we must use multiple machines in any search experiment. In conclusion,

we hope that this work will inspire you to boldly go into the wild and

invent an amazing factoring algorithm.

© João Carlos Leandro da Silva www.rainbowofprimes.com 22/11/2019

20

REFERENCES

[1] G. E. Andrews, Number Theory, Dover Publications, New

York, 1994.

[2] Ronald Rivest, Adi Shamir, and Leonard Adleman. A Method

for Obtaining Digital Signatures and Public-Key

Cryptosystems. Communications of the ACM, 21:120-126,

February 1978.

[3] A. K. Lenstra, Integer Factoring, Designs, Codes and

Cryptography 19 (2000), 101-128.

[4] R. Crandall and C. Pomerance, Prime Numbers: A

Computational Perspective, Springer-Verlag, New York, 2001.

[5] S. S. Wagstaff, Jr., The Joy of Factoring, Student Mathematical

Library, volume 68, American Mathematical Society,

Providence, 2013.

[6] V. C. Hamacher, Z. G. Vranesic and S. G. Zaky, Computer

Organization, McGraw-Hill Companies, New York, 1996.

[7] L. Rempe-Gillen and R. Waldecker, Primality Testing for

Beginners, Student Mathematical Library, volume 70,

American Mathematical Society, Providence, 2014

[8] J. C. L. da Silva, 3D cryptography, Available from

https://www.rainbowofprimes.com

https://www.rainbowofprimes.com/

