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We propose a new view for integer factorization based on a radical design. 

In the traditional model, the computer experiment consists of physical 

devices (hardware) which in turn contain programs (software) that run an 

algorithm equivalent to some mathematical theory. In the present model, 

the mathematical theory corresponds to a finite set of basic algorithms 

distributed among the hardware and all of these constitute the computer 

experiment itself. All of the currently known factoring algorithms consist 

of several steps in order to find any non-trivial factor. Such algorithms 

may run on a single or many machines. Our method is a single step – the 

generation of a multiple of any prime factor. Consequently, factoring 

reduces to searching efficiently for one such multiple. If the given modulus 

has   decimal digits then    machines or physical cores are required. The 

resulting search experiment is a square matrix of       computers. This 

method is deterministic and revolves around finding a three-dimensional 

point         that will lead to a successful factorization.  

 

1. INTRODUCTION 

The fundamental theorem of arithmetic states that every integer greater 

than 1 is either a prime or a finite product of prime numbers and such 

product is unique. For example, 28 is four times seven or 28 = 2 × 2 × 7 

and such is the only way you can express the integer 28 in terms of prime 

numbers. In fact, the unique-prime-factorization theorem is another name 

for the fundamental theorem of arithmetic [1]. Finding ways to break or 

factor composite integers into their respective primes goes back a long 

time but with the birth of public-key cryptography [2], the interest has 
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literally exploded [3]. Today, computer scientists refer to these methods as 

integer factorization algorithms [4]. Among the most used algorithms is 

the Elliptic Curve Method (ECM), the Quadratic Sieve (QS) and the 

Number Field Sieve (NFS). Although such techniques have achieved 

remarkable factorization records during the past decades, they all suffer 

from several drawbacks. First, their dependence on smooth numbers or 

random integers. Second, their inability to scale-up due to a bottleneck 

effect in at least one of their steps. Third, all these algorithms date back to 

1995, that is, in the past twenty-four years nobody has invented a new 

factorization method [5]. In this work, we provide an alternative path to 

the status quo. 3D integer factorization does not use smooth numbers. It 

has a single step so as the modulus increases either it works (outputs a 

non-trivial factor) or simply keeps on running. Further, this novel approach 

introduces original ideas and concepts that are worth considering. 

2. NEW MODEL 

In computer science, researchers frequently use terms such as experiment, 

hardware, software and algorithm [6]. What do these words really mean? 

Curious is the fact that no formal definition for algorithm exists. However, 

there is a general agreement regarding its properties. First, an algorithm 

has a finite description. Second, it is composed of “basic” steps. Third, the 

amount of resources required by the algorithm at any given time must be 

finite. Fourth, the next step depends on the result of the previous step. 

Fundamentally, an algorithm is a finite procedure that we will implement 

on a machine via a programming language [7]. Following, we suggest that 

the notions of algorithm and computer experiment are much more ample 

than expected. As shown in page 4, in the conventional model, an 

experiment comprises hardware of different types such as monitors and 

printers. These, in turn, contain software that run many algorithms. It is 

clear that all this can be associated with a single machine. For example, 

suppose that our experiment consists in recording the number of vehicles 

and the respective license plates of the cars parked in front of your house 

from 7 am to 7 pm. In this case, the hardware is a laptop and a smartphone. 
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The software is Microsoft Office and the algorithm is an Excel file. If more 

than one computer is used then the experiment incorporates all hardware, 

all software and every algorithm needed to carry it out. Such depicts the 

case of multiple machines as displayed on the left side of page 4. 

Therefore, in the conventional model there is no significant difference 

between an experiment for a single and that for multiple machines. On the 

other hand, in the new model major alterations occur. A 10 by 10 matrix 

enclosing 100 squares is on the right side of page 4. Each square contains a 

blue capital letter M that stands for machine with a number subscript 

ranging from 1 to 100 symbolizing the software count. The given matrix 

has an exterior red contour and an internal green grid. What we have just 

described is the new model. It represents a new method to factor a 10-digit 

modulus like 1476602513. In theory, since the modulus has 10 decimal 

digits then we need 100 computers. Each machine or hardware will occupy 

a square of the green grid. In addition, each machine contains a numbered 

copy of a software called Mathematica denoted by the software count. 

Within such proprietary program a basic algorithm exists that joined with 

all of its 100 copies constitutes the experiment itself as defined by the red 

contour. Note that in the new model there is no such thing as a factoring 

algorithm running on a single or multiple machines. Instead, we have a 

search experiment composed of 100 machines each containing a basic 

algorithm with a unique three-dimensional point        . Thus, in the new 

model (what was once understood as the “algorithm”) now has been split 

or partitioned into 100 different basic algorithms as shown by the internal 

green grid on page 4. In general, given a modulus with   decimal digits 

then    machines are required. Yet, when the modulus is small like 

1476602513 it is possible to use a single computer. The previous 

description shows that experiment, hardware, software and algorithm are 

not four distinct layers of computer science. We have revealed with respect 

to experiment and algorithm, a new and interesting connection that will aid 

in the design of innovative integer factorization methods.  
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3. FACTORING ALGORITHM = SEARCH EXPERIMENT 

Our analysis only considers classical computers (Turing machines) where 

each computer has a finite amount of random access memory (RAM) and a 

central processing unit (CPU) of finite speed. We deal with deterministic 

algorithms, that is, if an input   results in output   then every time we run 

that algorithm with input   the output will always be  . Assume the 

modulus is a semiprime or a composite of two different but equally sized 

prime factors. What are the main similarities among the known integer 

factorization algorithms? First, all three algorithms (ECM, QS and NFS) 

require some type of pre-computation as first step. Second, they all consist 

of a finite sequence of intermediate steps but not every such step is 

polynomial with respect to the input. Third, their final step is always the 

evaluation of the greatest common divisor between some specific 

numerical calculation and the given modulus. If the result is a non-trivial  

factor then we have a successful factorization. Please realize that such can 

only occur if the specific numerical calculation is a multiple of either 

prime factor. At this stage, a natural question comes to mind. The final aim 

of any integer factorization algorithm is to find a prime factor as swift as 

possible. Then, why not try to invent new algorithms based on the 

generation of a multiple of any prime factor? Regretfully, it seems that 

very few people believe that such is worth pursuing.  

To put it bluntly, factoring boils down to searching and efficient factoring 

is finding an express path to perform a successful search. From here on, 

we will substitute the commonly used expression “factoring algorithm” 

with “search experiment” or SE for short. Since the modulus is a 

semiprime, the mathematical theory states that there is an infinite number 

of multiples regarding either prime factor. Our aim is to find one such 

multiple as fast as possible. At the core of the SE there is a basic 

algorithm. It consists of a seed, a generator and a key. The seed changes 

the modulus into another integer. The generator has three inputs. The first 

input is the seed or an integer in base 10. The second input consists of a 

sequence of consecutive positive integers. The generator takes the seed 
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and converts it to many different bases (as many as the sequence) 

producing as output an array of integers. The key represents a three-

dimensional point         where all three coordinates are positive 

integers. If the given modulus has   decimal digits then    computers are 

required. The finite set of algorithms are    copies of the basic algorithm 

distributed among    machines. Yet, the values for both   and   in each 

of these copies are distinct and constant. The third input of the generator is 

the variable  . Therefore, the search experiment consists in running 

simultaneously all    computers where   starts at one and is incremented 

at every iteration. Please note that the variable   will determine if a 

multiple of any prime factor exists. In such case, the specific computer will 

halt and the respective algorithm will output any non-trivial factor of the 

given modulus. The search is complete and the factorization achieved. In  

several ways, 3D integer factorization is related to 3D cryptography [8]. 

The first views the modulus not as a mere composite number but as a 

mathematical cipher, that is, an integer that hides through the elementary 

operation of multiplication two unknown prime numbers. In order to break 

such cipher, our method does not use the power of mathematics alone but 

brings along the principles of basic cryptanalysis. In fact, the search 

experiment via its square matrix of       computers is just another 

architecture built to test simultaneously as many possible combinations of 

        points as we can. Our hope is that at least one of these machines 

will find a key that will open the hidden door to a valid factorization in a 

reasonable span of time. We will begin to explain everything in detail. 

What exactly indicates a multiple of any prime factor? Two illustrative 

examples will clear any doubts. Suppose our modulus is 15 where 3 and 5 

are its prime factors. Then, any multiple of 3 and any multiple of 5 will do 

the job in a single step because GCD[15, 6] = 3 and GCD[15, 10] = 5 

where GCD stands for the greatest common divisor. Likewise, if the 

modulus is 143 where 11 and 13 are its prime factors, then any multiple of 

11 and 13 will result in a successful factorization since GCD[143, 22] = 11 

and GCD[143, 26] = 13 as expected. We will demonstrate that there are 

many ways to generate such multiples.    
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4. GENERATION OF A MULTIPLE OF ANY PRIME FACTOR 

Provided all the decimal digits of the modulus, what can we do with only 

such piece of information? Surprisingly, a great deal! Remember the 

previous examples, 15 and 143. Pick 15, however, now regard this integer 

as a list or {1, 5} to be exact. Given a list of   distinct objects such list can 

be organized in    arrangements. Since both digits in our list are distinct, 

the number of permutations is 2! = 2. In fact, the permutations are {1, 5} 

and {5, 1} but after joining the respective digits inside each list, the result 

is 15 and 51, respectively. It is easy to see that 51 is a multiple of 3, hence 

GCD[15, 51] = 3 and we have found a way to generate a multiple of one of 

the prime factors of 15. Repeating this process again with 143, the number 

of permutations is 3! = 6 or {143, 134, 413, 431, 314, 341}.  Only 341 is a 

multiple of 11, consequently, GCD[143, 341] = 11 as expected. At last, we 

select the integer 2923 or the product of 37 and 79. In this case, the 

number of permutations is not twenty-four (4!) but twelve. The reason for 

such lies in the undeniable observation that the digit 2 is repeated twice 

within the list {2, 9, 2, 3}.  Hence, if the modulus has   decimal digits and 

some digits occur more than once, then the total number of permutations is 

smaller than    but bigger than one. With respect to the previously 

mentioned twelve permutations, only two numbers (9322 and 3922) are 

multiples of 79 and 37, respectively. If we now consider 175337 or the 

product of 271 and 647, there are 180 permutations but only one of these is 

a multiple of 271. Actually, GCD[175337, 775331] = 271. Pick 32927347 

there are 5,040 permutations, but only two of these are multiples of the 

respective prime factors. Thus, GCD[32927347, 33774922] = 3767 and 

GCD[32927347, 92243773] = 8741. Finally, elect 529356695359 as the 

last example. Even though there are 831,600 permutations, none of these is 

a multiple. Here, we fail to factor the given modulus. In conclusion, as the 

modulus increases the number of permutations grows very fast making it 

unfeasible from a computational stand. What happens if we pick a 

permutation at random? Such will not work either because there is no 

mathematical proof that among all the permutations there is a multiple.       
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We make another attack but this time with repunits. Repunits are integers 

composed of a single decimal digit but repeated many times like 1111111. 

Their mathematical formula is           where   stands for the number 

of digits. For example, the previous repunit has seven digits so in order to 

generate it substitute     into the above formula. In my opinion, repunits 

can factor any composite number. In fact, GCD[2923, 111] = 37 where 

    and GCD[175337, 11111] = 271 where    . The next modulus is 

32927347 and GCD[32927347, repunit] = 3767 where       . 

Remember that we failed to factor 529356695359 using permutations. 

Now, we get GCD[529356695359,  repunit] = 744431 where          

and GCD[529356695359,  repunit] = 711089 where        . Does this 

mean that repunits are more efficient than permutations? The answer is no 

since as the modulus increases so does the size of   making it impractical. 

For example, trying to factor a number like RSA-1024 bits (309 decimal 

digits) which in theory should be the product of a 155 decimal prime and a 

154 decimal prime is literally impossible because the size of   must be at 

least 155 decimal digits. Yet, repunits possess an interesting property. The 

infinite sequence of ones is both a decimal number and a binary number. 

For instance, in our previous example GCD[2923, 111] = 37 the repunit 

111 is the product of 3 and 37. The built-in function GCD of Mathematica 

from Wolfram Research Inc. considers all the arguments of such function 

as decimal numbers by default. On the other hand, if 111 is viewed as a 

binary number then it would be equivalent to 7 but GCD[2923, 7] = 1 and 

that is not our objective. Anyway, is there an integer in another base other 

than ten that is a multiple of any prime factor of 2923? Yes and there are 

many.  For example, 2923 in base 27 is 407 and GCD[2923, 407] = 37. 

Likewise, 2923 in base 42 is 395 and GCD[2923, 395] = 79 as expected. 

Once again, we use another built-in function IntegerDigits to obtain both 

407 and 395. Also, 175337 in base 99 and 32927347 in base 3777 give 

successful factorizations. Still, this variation will not work either since it is 

evident that as the modulus increases so does the numerical value of the 

corresponding base.  
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Another important aspect when trying to generate a multiple of any prime 

factor is the size or the number of decimal digits of the respective multiple. 

In the previous examples with repunits, the size of   is always greater than 

the number of decimal digits of the smallest prime factor. For example, the 

modulus 175337 is the product of 271 and 647. Both prime factors have 

three decimal digits and GCD[175337, 11111] = 271 where    . It is 

obvious that 111 or     could never factor 175337 since 111 is smaller 

than both 271 and 647. Therefore, given a semiprime or modulus with   

decimal digits, its smallest prime factor must have at least 
 

 
  decimal 

digits. If   is even then it is straightforward but if   is odd, divide it by 

two and take the integer value as the result. Hence, any potential multiple 

must have at least 
 

 
  decimal digits. For example, RSA-1024 bits is a 

semiprime with 309 decimal digits. If we divide 309 by two and remain 

with the integer value, 154 is the result. Accordingly, if you ever try to 

design a generator of multiples for RSA-1024 bits make sure that any 

output of the respective generator is at least 154 decimal digits in size, 

otherwise, your task is unattainable.  

 

5. BASIC ALGORITHM 

We learned that permutations and repunits by themselves do not lead to an 

efficient mechanism for generating multiples. The way to go is to combine 

a class of repunits with a collection of different bases but of a higher 

power. What do we mean? The formula            creates the 

sequence of ones while            produces the sequence of twos and 

so on. It is clear that the general formula is            where   ranges 

from one to nine so the class of repunits is the corresponding nine infinite 

sequences. Remember IntegerDigits we will use it again to present our 

argument. Base 99 successfully factored 175337 but such required calling 

ninety-eight times the above built-in function. Another option is to pick a 

small interval and increase it by orders of ten. For example, setting the 

interval to nine calls the function only five times. Because IntegerDigits 
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starts at             and ends at             so base 100009 factors 

175337. This is what we mean by a collection (one for each repunit 

sequence) of different bases but of a higher power.  

Our basic algorithm is a Mathematica notebook (see pages 12-13) and the 

size of the code is very small. The first line of Mathematica code clears all 

internal variables. The second line calculates the amount of memory used 

at the start of the notebook. The third line defines the number to be 

factored or        . The fourth line sets   or the second coordinate of 

the key. Such variable is a cyclic integer (1 followed by 12 followed by 

123 and so on), that is, if we use a single computer then after eleven runs 

              because following each run, the value of   must be 

changed manually. The fifth line identifies the variable     as the sum or 

difference between the given         and  . Such variable is the input of 

the seed. The sixth line is   or the first coordinate of the key. Recall 

IntegerDigits and the respective range that starts at             and 

ends at            . There are two distinct powers of ten (1 and 5), that 

is,     and    , respectively. The seventh line refers to the variable 

    which is the maximum value of the first coordinate of the key or  . 

Next, we introduce the body of our basic algorithm which consists of a 

single While loop. It is contained within a built-in function Timing which 

calculates the running time in seconds of all the operations inside the body. 

A few variables and constants are initialized outside of the loop. The third 

coordinate of the key is set to     where   corresponds to the variable   

in the formula            for the repunits. Thus,   determines not only 

the size of all repunits but also if a multiple of any prime factor of the 

given modulus exists. In fact, if such is not the case then   will go on (keep 

increasing by increments of one) until the full resources (RAM, HDD, etc) 

of the computer are used. The constant       refers to the interval (in our 

previous example it was 9) but here it is set to 1000.  Since we are dealing 

with a search experiment (SE) it is important to introduce two new terms: 

search space and size of the search space. Suppose that an oracle asks you 

to pick any prime number of any size.  Further, the oracle tells you that it 
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will search inside your mind and find the chosen prime. Such oracle must 

be godlike or incredibly lucky since the search space is       and the size 

of the search space is infinity. Ideally, the size of the search space (SSS) is 

equal to the search space (SS). In the real world, SSS << SS. In the basic 

algorithm           and the selection of its numerical value requires 

great caution. If        is too big, the SE will run very slowly and if it is 

too small, the SE will be fast but may not find any prime factor. 

Depending on the physical characteristics of the SE itself, the balance 

point is determined. For example, in our basic algorithm            

because SE is a single machine (Intel Core i7-6700 CPU @ 3.4 GHz) with 

16 GB of RAM. In other words, such numerical value for delta is the right 

balance between size and speed with respect to the computer at hand. The 

next constant is      which takes as input the variable     and reverses 

its decimal digits. The final constant is       and represents an empty set 

or simply the fact that no prime factor exists. Ultimately, we explain the 

inner workings of the While loop. Essentially, the loop is the generator. It 

amounts to a mix of repunits and the seed represented in different bases. 

The mix consists in adding and subtracting both repunits and bases. At 

every iteration of the While loop the following happens. First, the       is 

converted into 1000 different integers.  Second, these 1000 positive 

integers get added and subtracted to nine different sequences of repunits. 

Third, the resulting 1000 integers are all potential multiples. Yet, if no 

multiple of any of the prime factors is generated then   or the third 

coordinate of the key is incremented by one and the loop runs again. On 

the other hand, if a multiple exists, the loop terminates and outputs   and 

any respective prime factor. In addition, the loop also outputs the total time 

(in seconds) required to factor the given modulus. The last line of code of 

the basic algorithm calculates the maximum amount of memory used at the 

end of the notebook titled BasicAlgorithm.nb . The next two pages regard 

only the code of the basic algorithm while the pages 14-15 relate to its 

evaluation displayed by In[ ]:= for input and Out[ ]:= for output. Note that 

comments start with (* and end with *) as shown in the next two pages. 
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6. SEARCH EXPERIMENTS AND RESULTS 

In the last two pages, the previous experiment becomes search experiment 

nine or SE9, for short, as shown in the table below: 

SE# SS SSS x y z size of 

modulus 

(decimal 

digits) 

prime 

factor(s) 

time to 

factor 

(seconds) 

1           1 1 0 1 4 37 and 79 0 

2           10 1 0 3 6 271 0 

3           100 2 0 2 8 3767 0 

4           100 2 0 4 10 18211 0 

5            1000 4 0 15 12 711089 1 

6            1000 4 123456789 32 14 5894327 2 

7            1000 9 12 34 16 65774893 2 

8            1000 13 0 32 17 116092003 2 

9            1000 12 123456789012 104 20 6063673667 8 

 

It is very tempting to look above and imagine all sorts of patterns and 

relationships so before you jump into any conclusion, several remarks are 

of utmost importance. First, each search experiment is associated to a 

single modulus. Second, it is self-evident that as the modulus increases so 

does the search space (SS) and the same appears to occur with respect to 

the size of the search space (SSS) but it is not so. 3D integer factorization 

should scale-up to a composite like RSA-1024 bits still using SSS = 1000. 

Third, the range of the first coordinate of the key or   is always small. For 

example, even for the RSA semiprime, the range is between 4 and 308 

inclusive. Fourth, recall that the second coordinate of the key or   is a 

cyclic integer so only 309 cycles are necessary for RSA-1024 bits. Fifth, it 

seems that as the modulus increases so does the third coordinate of the key 

or   but such is misleading. In theory, for any given search experiment, 

there are many different         points. Each value of   reported above 

represents the first instance of a successful factorization. Hence, there may 

be other numerical values (smaller or larger) for   that result in a non-

trivial factor. Sixth, the times (in seconds) recorded above regard nine 

computer simulations and not the actual running of the respective search 

experiments. To be more precise, SE1 pertains to 2923;   SE2 to 175337; 
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SE3 to 32927347; SE4 to 1476602513; SE5 to a 12-digit semiprime or 

529356695359; SE6 to 54090759402923; SE7 to a 16-digit modulus or 

6427204259252773; SE8 to 50279637935012947 and finally SE9 to 

51585327759237658027. Unfortunately, throughout this research, we only 

had a single computer. Thus, computer simulation simply means using the 

same machine many times instead of multiple machines once. SE9 

concerns a semiprime with 20 decimal digits so 400 physical cores are 

needed but only one computer is available, so we manually changed the 

settings within the basic algorithm many times. How? Open the notebook 

BasicAlgorithm.nb and set     and     then run it for 10 seconds. If 

during this period there is no output, abort the evaluation of the notebook. 

Next, set     and     repeat the same actions until     and     . 

Continue this process but with     and     followed by     and 

    until     and       It is important to note that next      and 

    followed by      and     until      and       After two 

hundred and one evaluations of the above notebook, we discover that for 

               and      with       a prime factor is obtained 

in 8 seconds. Please note that such is equivalent to a search experiment of 

201 computers with 201 different         points running for 10 seconds. 

Now, we can justify why the previous times (in seconds) may not be the 

minimum factorization time for each given search experiment. In SE9, we 

needed 400 computers to test 400 different         points so 199 distinct 

        points are missing. This means that among these there could be 

some         point where the value of   is smaller than 104 and, in such 

case, the factorization time would be less than 8 seconds. In fact, such is 

the reason behind 3D integer factorization requiring    computers running 

simultaneously for a modulus with   decimal digits. All machines must 

run concurrently so that the    different         points are tested. In fact, 

it is impossible to know beforehand which machine will find a prime 

factor first. A last remark on SE9, in BasicAlgorithm.nb look at the 

numerical values corresponding to Out[9] and Out[2]. Their respective 

difference (23,973,400 – 23,564,384) is the actual amount of memory 

(409,016 bytes) needed to find the prime in the previous table.  
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We just mentioned that all    computers must run at the same time in 

order to search for a valid key. Yet, there is also the possibility that all 

computers keep running or never halt because the required value for   is 

too big. In my opinion, two are the ways to validate this new scheme. One, 

repeat SE1 thru SE9 but this turn using the respective required machines 

and for each SE record the minimum factoring time. Continue this process 

with higher moduli (for instance, until       and plot the results in a 

two-dimensional graph where the horizontal axes stands for the size of the 

modulus in decimal digits and the vertical axes for the factorization time in 

seconds. The resulting graph should be a straight line. Calculate its slope 

to determine the validity of 3D integer factorization. If the slope is big, the 

method fails to scale-up. On the other hand, if it is zero or small then 

repeat the entire process with even higher moduli (       and graph 

again to check if the slope did not vary. If it is still small then it is very 

likely that this innovative technique is efficient. Yet, before you start, 

recall that for a modulus with 100 decimal digits 10000 computers are 

required. Such large quantity of machines is difficult to find but they exist 

in the form of distributed computing or as supercomputers. Currently, the 

largest known supercomputer is Sunway TaihuLight and is located in 

China. It has more than ten million physical cores which means that even 

RSA-2048 bits (617 decimal digits) could be tested using the present 

method. Two, we sincerely hope that someone will consider this paper 

interesting and as a result will try to formalize the current method.  If this 

happens, one would be able to mathematically prove or disprove the 

validity of 3D integer factorization. In other words, if a mathematician or 

computer scientist can formalize this work then, in theory, it would be 

possible to understand the bounds (lower and upper) with respect to the 

size of the modulus without doing any experiment. Regardless, please 

acknowledge that if this approach is not suitable for larger moduli, perhaps 

a variation of it and/or an adequate modification either mathematical or 

conceptual may do the task. Our objective is to find either alone or in 

collaboration an efficient method or technique that will definitely solve the 

integer factorization problem in the positive. 
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7. CONCLUSIONS 

We believe that the design principles of simplicity and symmetry should 

be the pillars for the next generation of factoring algorithms. Simple means 

many things. First, the algorithm is deterministic and uses a small portion 

of the total RAM available within the given computer system independent 

of the modulus. Second, the algorithm has few steps and the size of the 

code is small. Third, the body of the algorithm contains two loops (at 

most) and we can measure its running time in seconds with precision. 

Fourth, all built-in functions are polynomial with respect to the input. 

Every mathematical operation employed runs in polynomial time. 

Likewise, symmetrical can be used to characterize several things. First, it 

is evident that the mathematical theory behind any truly efficient factoring 

algorithm must be both general and unconditional. In addition, it should 

also be symmetrical. For example, 3D integer factorization searches for a 

multiple of any prime factor. Since the modulus is a semiprime there is an 

infinite number of multiples for both prime factors and such is symmetry 

for an equal probability exists of finding either prime factor. Second, the 

body of the basic algorithm is symmetrical because it consists entirely on 

the addition and subtraction of both repunits and different bases. Third, for 

any modulus  , the respective search experiment is symmetrical due to 

the fact that all    machines have  the same chance of discovering any 

prime factor. In this paper, we showed a new perspective on the integer 

factorization problem both in terms of mathematical theory and computer 

organization. The accepted notion of factoring algorithm was questioned 

and, as a result, the concept of search experiment was introduced via 3D 

integer factorization. Nine different semiprimes ranging in size from four 

to twenty decimal digits were factored using this method. The 

corresponding factoring times range from zero to eighth seconds on a 

single computer. However, in order to detect the minimum factoring time, 

we must use multiple machines in any search experiment. In conclusion, 

we hope that this work will inspire you to boldly go into the wild and 

invent an amazing factoring algorithm.  
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